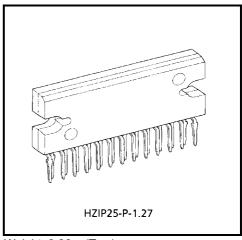
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8435H

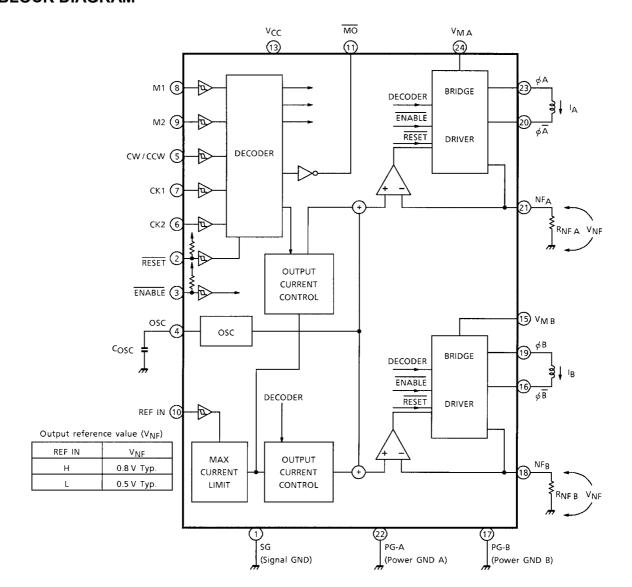

PWM CHOPPER TYPE BIPOLAR STEPPING MOTOR DRIVER.

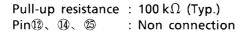
The TA8435H is PWM chopper type sinusoidal micro step bipolar stepping motor driver.

Sinusoidal micro step operation is accomplished only a clock signal inputting by means of built-in hard ware.

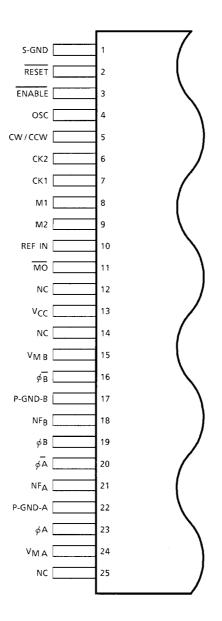
FEATURES

- 1 chip bipolar sinusoidal micro step stepping motor driver.
- Output current up to 1.5 A (AVE.) and 2.5 A (PEAK).
- PWM chopper type.
- Structured by high voltage Bi-CMOS process technology.
- Forward and reverse rotation are available.
- 2, 1–2, W1–2, 2W1–2 phase 1 or 2 clock drives are selectable.
- Package : HZIP25-P
- Input Pull-up Resistor equipped with RESET Terminal: R = 100 kΩ(Typ.)
- Output Monitor available with $\overline{\text{MO}} \text{ IO}(\overline{\text{MO}}) = \pm 2 \text{ mA} (\text{MAX.})$
- Reset and Enable are available with $\overline{\text{RESET}}$ and $\overline{\text{ENABLE}}$.



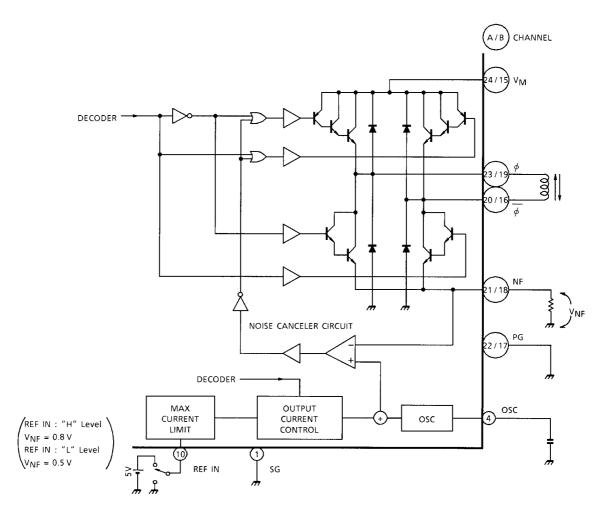

Weight: 9.86 g (Typ.)

TA8435H


BLOCK DIAGRAM

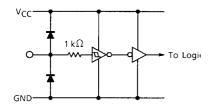
TOSHIBA

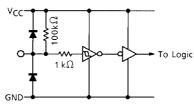
PIN CONNECTION (Top view)

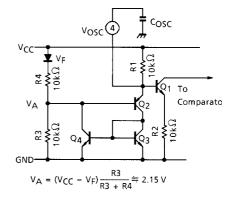


Note: NC : No connection

PIN FUNCTION


PIN No	SYMBOL	FUNCTIONAL DESCRIPTION
1	SG	Signal GND.
2	RESET	L : RESET.
3	ENABLE	L : ENABLE, H: OFF.
4	OSC	Chopping oscillation is determined by the external capacitor.
5	CW / CCW	Forward / Reverse switching terminal.
6	CK2	Clock input terminal.
7	CK1	Clock input terminal.
8	M1	Excitation control input
9	M2	Excitation control input
10	REF IN	V _{NF} control input
11	MO	Monitor output
12	NC	No connection.
13	V _{CC}	Voltage supply for logic.
14	NC	No connection.
15	V _{MB}	Output power supply terminal.
16	φB	Output $\phi \overline{B}$
17	PG-B	Power GND.
18	NFB	B-ch output current detection terminal.
19	φB	Output φB
20	φĀ	Output $\phi \overline{A}$
21	NFA	A-ch output current detection terminal.
22	PG-A	Power GND
23	φΑ	Output φA
24	V _{MA}	Output power supply terminal.
25	NC	No connection.


OUTPUT CIRCUIT


INPUT CIRCUIT

- CK1, CK2, CW / CCW, M1, M2, REF IN: Terminals
- RESET, ENABLE : Terminals
- OSC: Terminal

100 k Ω of Pull-up Resister is equipped.

OSC FREQUENCY CALCULATION

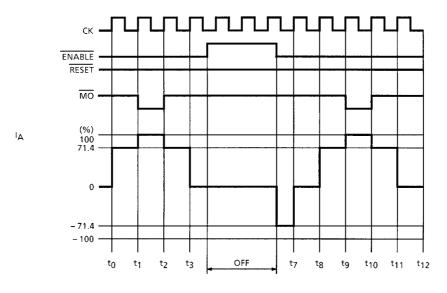
Sawtooth OSC circuit consists of Q1 through Q4 and R1 through R4. Q2 is turned "off" when VOSC is less than the voltage of 2.5 V + VBE Q2 approximately equal to 2.85 V. VOSC is increased by COSC charging through R1. Q3 and Q4 are turned "on" when VOSC becomes 2.85 V (Higher level.) Lower level of V (4) pin is equal to VBE Q2 + VSAT Q4 approximately equal to 1.4 V. VOSC is calculated by following equation.

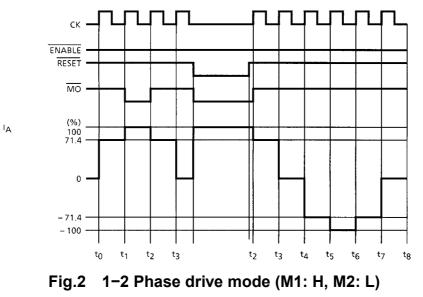
Assuming that $V_{OSC} = 1.4 \text{ V} (t = t_1) \text{ and } = 2.85 \text{ V} (t = t_2)$

 C_{OSC} is external capacitance connected to pin (4) and R1 is on-chip 10 kΩresistor. Therefore, OSC frequency is calculated as follows.

$$\begin{aligned} t_1 &= -\operatorname{Cosc} \ \mathrm{R1} \cdot \lambda n \ (1 - \frac{1.4}{5}) \ \cdots \ (2) \\ t_2 &= -\operatorname{Cosc} \ \mathrm{R1} \cdot \lambda n \ (1 - \frac{2.85}{5}) \ \cdots \ (3) \\ f_{\mathrm{OSC}} &= \frac{1}{t_2 - t_1} = \frac{1}{\operatorname{Cosc}} \ (\mathrm{R1} \cdot \lambda n \ (1 - \frac{1.4}{5}) - \mathrm{R1} \cdot \lambda n \ (1 - \frac{2.85}{5})) \\ &= \frac{1}{5.15 \cdot \mathrm{Cosc}} \ (\mathrm{kHz})(\mathrm{Cosc} : \mu \mathrm{F}) \end{aligned}$$

ENABLE AND RESET FUNCTION AND MO SIGNAL




Fig.1 1-2 Phase drive mode (M1: H, M2: L)

ENABLE Signal disables only Output Signal.

Internal logic functions are proceeded by CK signal without regard to $\overline{\text{ENABLE}}$ signal.

Therefore, Output Current is initiated from the proceeded timing point of internal logic circuit after release of disable mode.

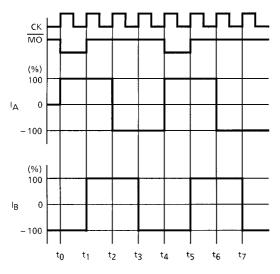
Fig.1 shows the $\overline{\text{ENABLE}}$ functions, when the system is selected in 1–2 Phase drive mode.

Low level active of $\overline{\text{RESET}}$ Signal offs not only the Outputs but also stops internal CK functions and $\overline{\text{MO}}$ to low. Outputs are initiated from the initial point after release of $\overline{\text{RESET}}$ (High) as shown in Fig.2. $\overline{\text{MO}}$ (Monitor Output) Signals can be used as rotation and initial signal for stable rotation checking.

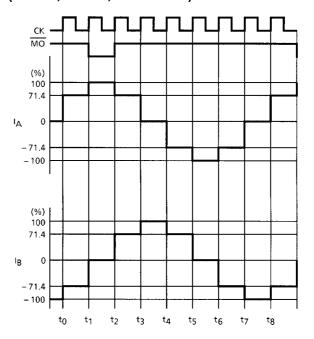
FUNCTION

		-	MODE		
CK1	CK2	CW / CCW	RESET	ENABLE	MODE
	н	L	Н	L	cw
Ę	L	L	н	L	INHIBIT (Note)
Н		L	Н	L	CCW
L		L	Н	L	INHIBIT (Note)
4	Н	Н	Н	L	CCW
Ę	L	н	н	L	INHIBIT (Note)
н	4	Н	н	L	CW
L	Л	Н	Н	L	INHIBIT (Note)
х	х	х	L	L	RESET
х	х	х	х	Н	Z

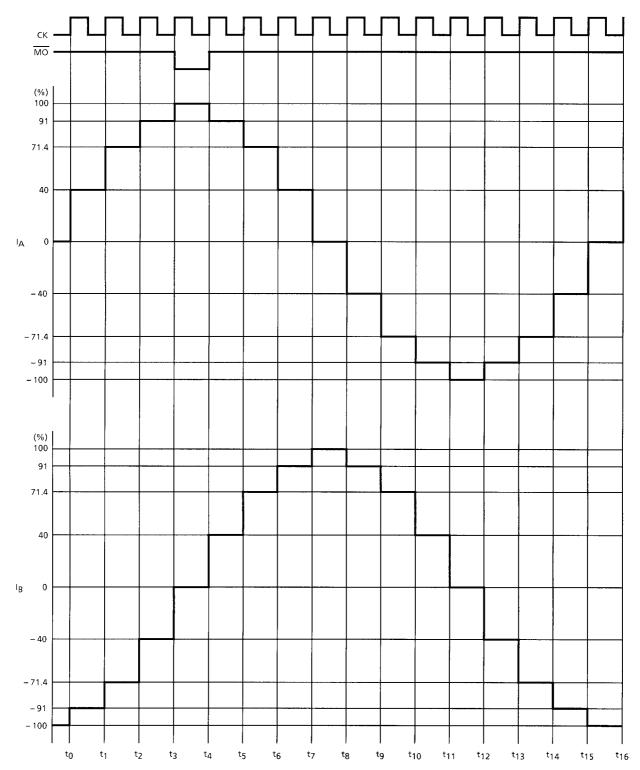
INITIAL MODE

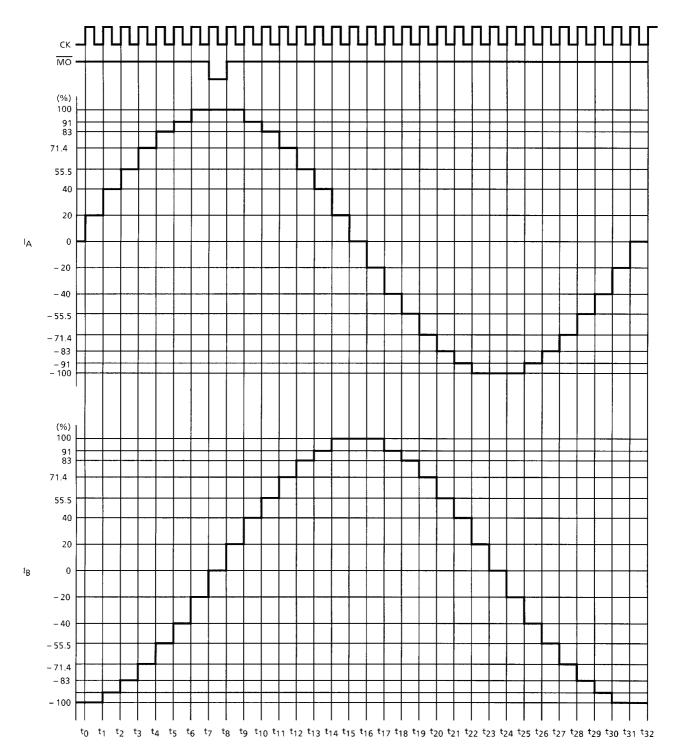

EXCITATION MODE	A PHASE CURRENT	B PHASE CURRENT
2 Phase	100%	-100%
1-2 Phase	100%	0%
W1-2 Phase	100%	0%
2W1-2 Phase	100%	0%

Z: High impedance


X: Don't Care

INF	PUT	MODE		
M1	M2	(EXCITATION)		
L	L	2 Phase		
н	L	1-2 Phase		
L	Н	W1-2 Phase		
Н	Н	2W1-2 Phase		


2 PHASE EXCITATION (M1 : L, M2 : L, CW MODE)


1-2 PHASE EXCITATION (M1 : H, M2 : L, CW MODE)

W1-2 PHASE EXCITATION (M1 : L, M2 : H, CW MODE)

2W1-2 PHASE EXCITATION (M1 : H, M2 : H, CW MODE)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT
Supply Voltage		V _{CC}	5.5	V
Output Voltage		VM	40	V
	PEAK	I _{O (PEAK)}	2.5	А
Output Current	AVE	I _{O (AVE.)}	1.5	~
MO Output Current		IO(MO)	±2	mA
Input Voltage		V _{IN}	~V _{CC}	V
Power Dissipation		D-	5 (Note 1)	w
Power Dissipation		PD	43 (Note 2)	vv
Operating Temperatu	e	T _{opr}	-40~85	°C
Storage Temperature		T _{stg}	-55~150	°C
Feed Back Voltage		V _{NF}	1.0	V

Note 1: No heat sink

Note 2: Tc = 85°C

RECOMMENDED OPERATING CONDITIONS (Ta = -20~75°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage	V _{CC}	—	4.5	5.0	5.5	V
Output Voltage	V _M	—	21.6	24	26.4	V
Output Current	IOUT	—	_	_	1.5	А
Input Voltage	V _{IN}	—	_	_	V _{CC}	V
Clock Frequency	fск	—	_	_	5	kHz
OSC Frequency	f _{OSC}	—	15	_	80	kHz

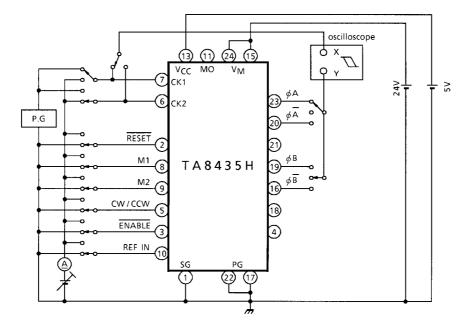
ELECTRICAL CHARACTERISTICS (Ta = 25°C, V_{CC} = 5 V, VM = 24 V)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDIT	ION	MIN	TYP.	MAX	UNIT
Input Voltage	High	V _{IN (H)}		M1, M2, CW / CCW, REF IN		3.5		V _{CC} + 0.4	V
input voltage	Low	V _{IN (L)}	1	ENABLE , CK1, CK2 RESET		GND -0.4		1.5	v
Input Hysteresis V	oltage	V _H				-	600	_	mV
		I _{IN-1 (H)}		M1, M2, REF IN, V _{IN} = 5.0	V C	_	_	100	nA
Input Current		I _{IN-1 (L)}	1	RESET , ENABLE , V _{IN} INTERNAL PULL-UP RE	= 0 V SISTOR	10	50	100	μA
		I _{IN-2 (L)}		SOURCE TYPE, VIN = 0	V			100	nA
		I _{CC1}		Output Open, RESET ENABLE (2, 1-2 Phase excitation)	: H : L	_	10	18	
Quiescent Current Terminal	Quiescent Current V _{CC} Terminal		1	Output Open, RESET : H ENABLE : L (W1-2, 2W1-2 Phase excitation)		— 10	18	mA	
		I _{CC3}		RESET : L, ENABLE : H	4		5	_	
		I _{CC4}		RESET : H, ENABLE : H			5	_	
Comparator Reference	High	V _{NF (H)}	3	REF IN H Output Open			0.8	0.88	V
Voltage	Low	V _{NF (L)}		REF IN L Output Open	(1010)	0.45	0.5	0.55	v
Output Differential		ΔV_{O}	_	B / A, C _{OSC} = 0.0033 μF, R _{NF} = 0.8 Ω		-10		10	%
V _{NF (H)} – V _{NF (L)}		ΔV_{NF}	_	V _{NF (L)} / V _{NF (H)} C _{OSC} = 0.0033 µF, R _{NF} =	· 0.8 Ω	56	63	70	%
NF Terminal Curre	ent	I _{NF}	_	SOURCE TYPE		_	170	_	μA
Maximum OSC Fr	equency	fOSC (MAX.)	_	_		100	_	—	kHz
Minimum OSC Fre	Minimum OSC Frequency		—				-	10	kHz
OSC Frequency		fosc	—	C _{OSC} = 0.0033 µF		25	44	62	kHz
Minimum Clock Pu	ulse Width	t _{W (CK)}	—			_	1.0	_	μs
Output Voltage		$V_{OH}(\overline{MO})$		I _{OH} = −40 μA		4.5	4.9	V _{CC}	v
Supur Voltage		V _{OL} (MO)		I _{OL} = 40 μA		GND	0.1	0.5	V

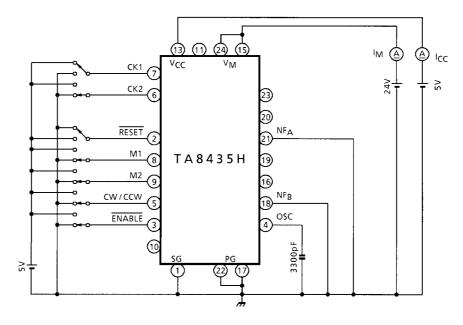
Note: 2 Phase excitation, R_{NF} = 0.7 Ω , C_{OSC} = 0.0033 μ F

OUTPUT BLOCK

СН	ARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITI	ON	MIN	TYP.	MAX	UNIT
	Upper Side	V _{SAT U1}		I _{OUT} = 1.5 A		_	2.1	2.8	
	Lower Side	V _{SAT L1}					1.3	2.0	
Output Saturation	Upper Side	V _{SAT U2}	4	I _{ОИТ} = 0.8 А			1.8	2.2	v
Voltage	Lower Side	V _{SAT L2}	-	1001 - 0.0 X			1.1	1.5	v
	Upper Side	V _{SAT U3}		I _{OUT} = 2.5 A		-	2.5	3.0	
	Lower Side	V _{SAT L3}		Pulse width 30 ms		-	1.8	2.2	
	Upper Side	V _{F U1}		Laure = 1.5 A		_	2.0	3.0	
Diode Forward	Lower Side	V _{FL1}	5	I _{OUT} = 1.5 A		_	1.5	2.1	
Voltage	Upper Side	V _{F U2}	5	I _{OUT} = 2.5 A Pulse width 30 ms		_	2.5	3.3	V
	Lower Side	V _{F L2}					1.8	2.5	
	Output Dark Current		2	ENABLE : "H" Level, Output Open RESET : "L" Level			_	50	μA
(A + B Cha	annels)	I _{M2}	2	ENABLE : "L" Level Output Open RESET : "H" Level		_	8	15	mA
	2W1-2φ W1-2φ 1-2φ			θ = 0			100	_	%
	2W1-2φ — —			θ = 1 / 8		_	100	_	
	2W1-2φ W1-2φ —			θ = 2 / 8	REF IN : H	86	91	96	
А-В	2W1-2φ — —			θ = 3 / 8	$R_{NF} = 0.8$	78	83	88	
Chopping	2W1-2φ W1-2φ 1-2φ	VECTOR	_	θ = 4 / 8	$C_{OSC} =$	66.4	71.4	76.4	
Current (Note)	2W1-2φ — —			θ = 5 / 8	0.0033 µF	50.5	55.5	60.5	
	2W1-2φ W1-2φ —	1		θ = 6 / 8		35	40	45	
	2W1-2φ — —			θ = 7 / 8	1	15	20	25	
	2 Phase Excitation Mode VECTOR			_		_	100	_	

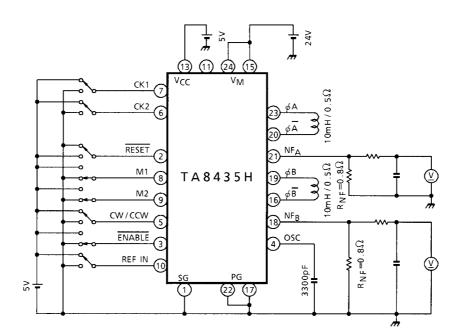

Note: Maximum current ($\theta = 0$): 100% 2W1-2 ϕ : 2W1, 2 phase excitation mode W1-2 ϕ : W1, 2 phase excitation mode 1-2 ϕ : 1, 2 phase excitation mode

Cł	CHARACTERISTIC			SYMBOL	TEST CIR- CUIT	TEST CO	NDITION	MIN	TYP.	MAX	UNIT			
	2W1−2¢	W1−2φ	1-2φ			$\theta = 0$		_	100	_				
	2W1−2φ		_			θ = 1 / 8		_	100	_				
	2W1−2¢	W1-2φ	_			θ = 2 / 8		86	91	96				
А-В	2W1−2¢		_			$\theta = 3 / 8$	REF IN : H R _{NF} = 0.8 Ω	78	83	88				
Chopping	2W1−2¢	W1−2φ	1-2φ	VECTOR	_	θ = 4 / 8	C _{OSC} = 0.0033 µF	66.4	71.4	76.4	%			
Current (Note)	2W1−2φ		_			θ = 5 / 8	0.0000 µi	50.5	55.5	60.5				
	2W1−2¢	W1-2φ	_			θ = 6 / 8		35	40	45				
	2W1−2¢		_			θ = 7 / 8		15	20	25				
	2 Phas VECTC	e Excitatio R	n Mode					_	100	_				
						$\Delta \theta = 0 / 8 - 1 / 8$		_	0	_	mV			
				ΔV_{NF}		$\Delta \theta = 1 / 8 - 2 / 8$	REF IN : Η R _{NF} = 0.8 Ω C _{OSC} = 0.0033 μF	32	72	112				
					_	$\Delta \theta = 2 / 8 - 3 / 8$		24	64	104				
Feed Back	Voltage S	Step				$\Delta \theta = 3 / 8 - 4 / 8$		53	93	133				
						$\Delta \theta = 4 / 8 - 5 / 8$		87	127	167				
						$\Delta \theta = 5 / 8 - 6 / 8$		84	124	164				
						$\Delta \theta = 6 / 8 - 7 / 8$		120	160	200				
				tr		R _L = 2 Ω, V _{NF} =	0 V,	_	0.3	_	-			
				t _f		C _L = 15 pF		_	2.2	_				
				t _{pLH}				_	1.5	_	1			
				t _{pHL}		CK~Output		_	2.7	_				
Output T _r S	witching	Characteri	etice	t _{pLH}	7	OSC~Output		—	5.4	—				
	witching	Characteri	31103	t _{pHL}				—	6.3	—	μs			
				t _{pLH}]	RESET ~Output		_	2.0	—	1			
				t _{pHL}				_	2.5	_				
			t _{pLH}		ENABLE ~Outpu	ıt	—	5.0	_					
		t _{pHL}			л. 	_	6.0	—						
Output Leal	kage	Jpper Side	9	I _{ОН}	6	V _M = 30 V		_	—	50	μA			
Current	Γ	_ower Side	;	I _{OL}		v M = 20 v		_	-	50	μΛ			

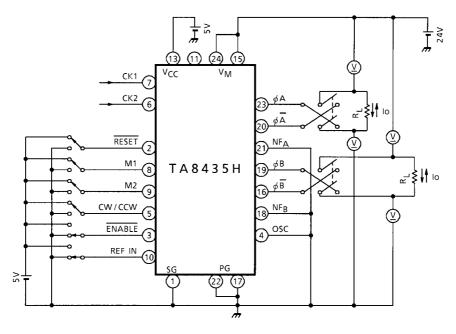

Note: Maximum current ($\theta = 0$): 100% 2W1-2 ϕ : 2W1, 2 phase excitation mode W1-2 ϕ : W1, 2 phase excitation mode 1-2 ϕ : 1, 2 phase excitation mode

TEST CIRCUIT 1

 $V_{IN\;(H),\;(L),\;I_{IN}\;(H),\;(L)}$

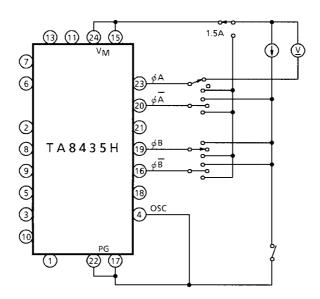


TEST CIRCUIT 2 I_{CC} , I_M

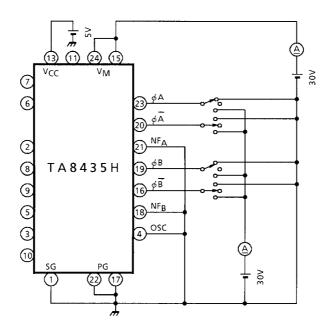


TEST CIRCUIT 3

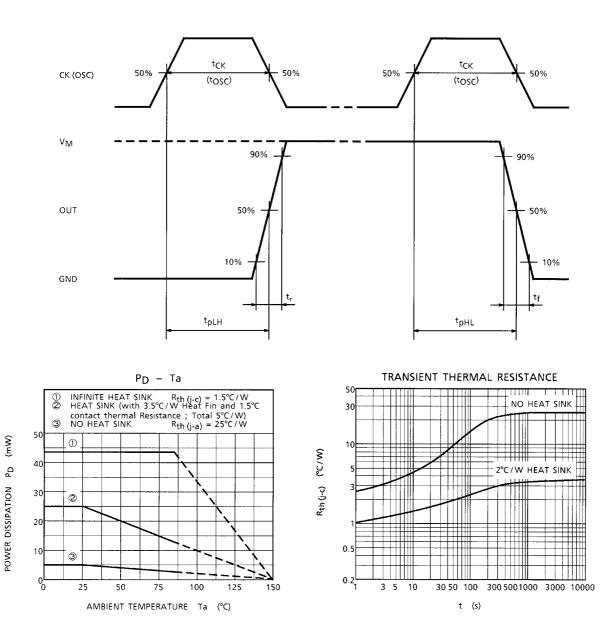
V_{NF (H)}, (L)

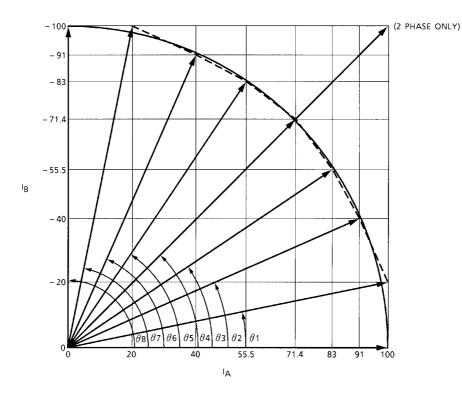


TEST CIRCUIT 4 $V_{CE (SAT)}$ UPPER SIDE, LOWER SIDE

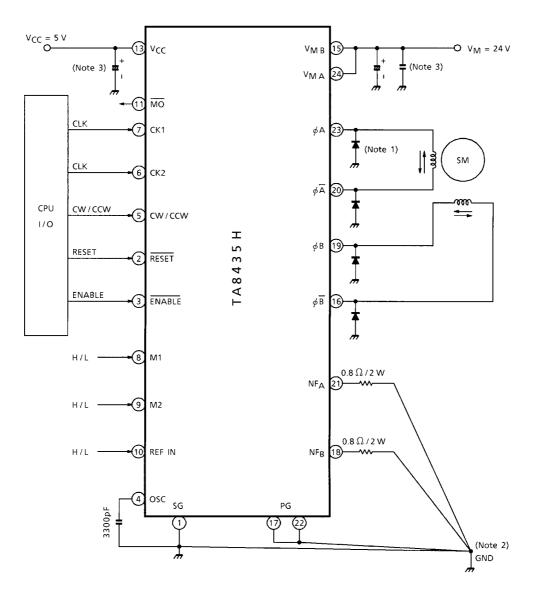


Note: Calibrate Io to 1.5 A / 0.8 A by R_L


TEST CIRCUIT 5 V_{FU}, V_{FL}


TEST CIRCUIT 6

AC ELECTRICAL CHARACTERISTICS, MEASUREMENT WAVE CK (OSC)-OUT



OUTPUT CURRENT VECTOR ORBIT (Normalize to 90° for each one step)

θ	ROTATIO	N ANGLE	VECTOR LENGTH			
0	IDEAL	TA8435H IDEAL TA843		35H		
θ0	0°	0°	100	100.00	_	
θ1	11.25°	11.31°	100	101.98	—	
θ2	22.5°	23.73°	100	99.40	—	
θ3	33.75°	33.77°	100	99.85	—	
θ4	45°	45°	100	100.97	141.42	
θ5	56.25°	56.23°	100	99.85	—	
θ6	67.5°	66.27°	100	99.40	—	
θ7	78.75°	78.69°	100	101.98	_	
θ8	90°	90°	100	100.00	_	
			1-2 / W1-2 / 2	W1-2 Phase	2 Phase	

APPLICATION CIRCUIT

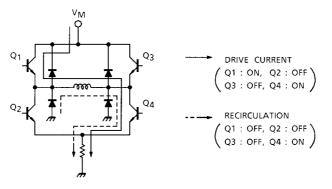
- Note 1: Schottky diode (3GWJ42) to be connected additionally between each output (pin 16 / 19 / 20 / 23) and GND for preventing Punch–Through Current
- Note 2: GND pattern to be laid out at one point in order to prevent common impedance.
- Note 3: Capacitor for noise suppression to be connected between the Power Supply (V_{CC} , V_M) and GND to stabilize the operation.
- Note 4: Utmost care is necessary in the design of the output line, V_M and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

When using TA8435H

0. Introduction

The TA8435H controls PWM to set the stepping motor winding current to constant current. The device is a micro-step driver IC used to efficiently drive the stepping motor at low vibration.

1. About micro-step drive


The TA8435H drives a stepping motor in micro steps with a maximum resolution of $1\ /\ 8$ of the 2–phase stepping angle (in 2W1–2 phase mode).

In micro steps, A-phase and B-phase current levels are set inside the IC so that the composite vector size and the rotation angle are even. Just inputting clock signals rotates the stepping motor in micro steps.

2. About PWM control and output current setting

(1) Output current path (PWM control)

The TA8435H controls PWM by turning the upper power transistor on / off. In such a case, current flows as shown in the figure below.

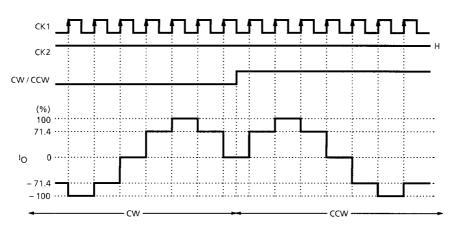
(2) Setting of output current by REF-IN input and current detection resistor

The motor current (maximum current for micro-step drive) IO is set as shown in the following equation, using REF-IN input and the external current detection resistor R_{NF} .

$$\begin{split} & \mathrm{IO} = \mathrm{VREF} \ / \ \mathrm{RNF} \\ & \mathrm{where}, \\ & \mathrm{REF} - \mathrm{IN} = \mathrm{High}, \\ & \mathrm{REF} - \mathrm{IN} = \mathrm{Low}, \\ \end{split} \quad \begin{array}{l} \mathrm{V_{\mathsf{REF}}} = 0.8 \ \mathrm{V} \\ & \mathrm{V_{\mathsf{REF}}} = 0.5 \ \mathrm{V} \\ \end{array} \end{split}$$

3. Logic control

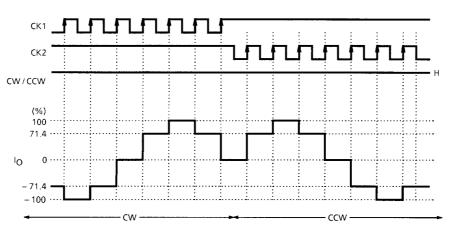
(1) Clock input for rotation direction control


To switch rotation between forward and reverse, there are two clock input types: 1–clock input and 2–clock input.

(a) 1-clock input

Uses either clock pin CK1 or CK2.

Switches rotation between forward or reverse using the CW or CCW signal.


<Input signal example: 1-2 phase mode>

(b) 2-clock input

Uses both clock pins CK1 and CK2. Switching between CK1 and CK2 controls forward / reverse rotation.

<Input signal example: 1-2 phase mode>

<u>TOSHIBA</u>

(2) Mode setting

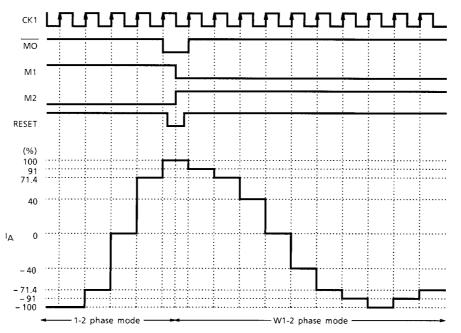
Setting M1 and M2 selects one of the following modes: 2–phase, 1–2 phase, W1–2 phase, and 2W1–2 phase modes.

(3) Monitor (\overline{MO}) output

Supports the monitor output used to monitor the current waveform location. For 2-phase mode, $\overline{\text{MO}}$ output is Low at the timing of A-phase current = 100% and B-phase current = -100%. For 1-2 phase, W1-2 phase, or 2W1-2 phase mode, $\overline{\text{MO}}$ output is Low at the timing of A-phase

For 1–2 phase, W1–2 phase, or 2W1–2 phase mode, MO output is Low at the timing of A–phase current = 100% and B–phase current = 0%.

(4) Reset pin


Supports reset input used to reset the internal counter. Setting RESET to Low resets the internal counter, forcing the output current to the same value as that when the $\overline{\text{MO}}$ output is Low.

(5) Phase mode switching

To avoid the step changing during motor rotation, current must not fluctuate at phase mode switching. Pay attention to the following points.

- (a) When switching between 2-phase and other phase modes, current fluctuates.
- (b) When switching between phase modes other than 2-phase, current can be switched without fluctuation at the timing of MO output = Low.
 However, when switching as follows, set RESET to Low beforehand:
 From 1-2 phase to W1-2 phase or 2W1-2 phase mode
 From W1-2 phase to 2W1-2 phase mode

<Example of Input Signal>

4. About PWM oscillation frequency (external capacitor setting)

An external capacitor connected to the OSC pin is used to internally generate a sawtooth waveform. PWM is controlled using this frequency.

To shiba recommend 3300 $\rm pF$ for the capacitance by taking variation between ICs into consideration.

5. About external Schottky diode

A parasitic diode is created on the lower side of the output. When PWM is controlled, current flows to the parasitic diode. This current results in a punch-through current and micro-step waveform fluctuation. Therefore, make sure to externally connect a Schottky barrier diode. The external diode can reduce heat generated in the IC.

6. Power dissipation

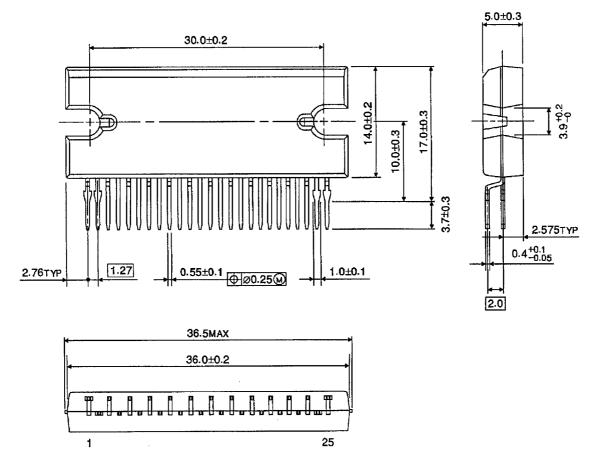
The IC power dissipation is determined by the following equation (In a case where shottky diode is connected between Output pin and GND):

 $P = V_{CC} \times I_{CC} + VM \times IM + IO (t_{ON} \times V_{SAT} - U + V_{SAT} - L)$

 $t_{ON} = T_{ON} / T_S$ (PWM control ON duty)

The higher the ambient temperature, the smaller the power dissipation. Check the PD-Ta curve and design heat dissipation with a sufficient margin.

7. About heatsink fin processing


The IC fin (rear) is electrically connected to the rear of the chip. When current flows to the fin, the IC malfunctions.

If there is any possibility of a voltage being generated between the IC GND and the fin, either ground the fin or insulate it.

PACKAGE DIMENSIONS

HZIP25-P-1.27

Unit: mm

Weight: 9.86 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.